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Gauss's Ternary Form Reduction and 
the 2-Sylow Subgroup 

By Daniel Sbanks 

Abstract. An algorithm is developed for determining the 2-Sylow subgroup of the class 
group of a qtadratic field provided the complete factorization of the discriminant dis known. 
It uses Gauss's ternary form reduction with some new improvements and is applicable even 
if d is so large that the class number h(d) is inaccessible. Examples are given for various 
d that illustrate a number of special problems. 

1. Introduction. The problem treated here is this: Given an imaginary quadratic 
field Q(V - A) where the factorization of A is completely known, to compute the 
2-Sylow subgroup of its class group. My interest in a solution was motivated by two 
closely related questions. Since these are interesting in their own right, I will use them 
here as an introduction. 

For certain n, the numbers 

(1) =(2 +3) -8 

are primes of the form 8k + I with many remarkable properties f1, p. 158]. Since S. is 
then prime, the 2-Sylow subgroup for Q(X/- -S.) is cyclic and is 

(2) C(2u(v)) 

of some unknown order 2U"'). Here is a brief table: 

n U(11) 1 U(n) n U(n) 
1 2 6 6 19 7 
2 3 8 8 27 6 
3 3 10 9 28 9 
4 4 11 6 32 8 
5 5 12 10 36 10 

Now, it is easily seen that U(n) ? 3 for n > 1, btut it was (and remains) obscure why 
the U(n) are much larger. The determination of U(n) is a special case of the general 
problem above, with A = prime S, and (2) as the 2-Sylow subgroup. 

Next, consider 

S36 = 4722366483281962074113. 

The only feasible way of evaluating 

(3) N1-4S36) = 50866650112, 
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to my knowledge, is the method I introduced in [2]. For this specific case (3), 1 pointed 
out there [2, p. 417] that if one knows that 

h 210 (mod 2"), 

then the algorithm in [2] can be speeded up by a factor of 2'1/2 45. The knowledge 
that U(36) = 10 therefore much facilitates the evaluation of the class number (3). 
Consequently, I referred to this present paper in [2], before its publication, as ref. [6], 
"to appear". 

The solution of the problem is suggested by the theory of factorization given in 
Section 5 of [2]. Consider 

(4) h(-4S,9) = 128 3377. 

To factor Sl9 (not yet knowing that it is prime), one selects a binary quadratic form of 
discriminant -4S,9 such as 

F = (3, 2, 91627017558), 

and computes 

(5) G- F3377 (318607, -142542, 878702) 

by composition. (See [2, Appendix 1] for an efficient algorithm.) Then, repeatedly 
squaring, one obtains 

G = (167277, -111536, 1661861) 

G4 = (502722, -256318, 579457) 

G8 = (71473, 52746, 3855674) 

(6) G'6 = (169257, 71408, 1631577) 

(7) G32 (524289, 4, 524293) 

(8) a = G64 (2, 2, 137440526337) 

(9) 1 = G"8 (1, 0, 274881052673). 

Since G is thus of order 128, the 2-Sylow subgroup is cyclic 4nd the only ambiguous 
formns are the identity (9) and the trivial (8). Therefore, S", is prime and has no proper 
factors. 

The general strategy of cletermining U1(19), if one does nIot know the (lass numllber 
(4), is now clear. One starts at the ambiguous form (8) and determines one of its s(juare- 
roots Va. Gauss's famous thleoreml [3] states that a form-i has a square-root if and only 
if it is in the princilpal genus. And (8) is in the principal genus since (2 I S,) = + 1. 

Subsequent to Gauss, other proofs were given for his theorenm buLt Gauss's proof is 
the most explicitly conistrulctive of tlhem all. Using his construction we thereby obtalin 
(7) (or the other squLare-root G--2). If (7) is in the principal genus (it is), we repeat the 
operation and contiliLCe Lintil we get to (5) (or some other 128tlh root of 1). Sinice G is 
nIot in the principal genuls, the process terminiiates and one has U(19) 7. 

The solution of tlle general problem is similar. Assumne that Q(xl A) has 2 
genera, and therefore 2o ambiguOLus forms 

(10) I, 02, (X3* 02, 
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Its 2-Sylow subgroup now has r cyclic factors: 

(1 1) C(2") X C(2"2) X ... X C(2"t) 

and we wish to compute n, n2, . . Since the factorization of A is completely known, 
we can write each a: a2, a3, ... explicitly. For each ai in the principal genus, if any, 
we may evaluate one of its square-roots 

Ki = Va/i 

as above. Then the remaining 2r _ 1 square-roots of (2, are given simply by the 
compositions 

(12) 62Kj, a3Kj, ** 2, Ki 

since the class group is Abelian. We thereby can build up the entire 2-Sylow subgroup 
(11) explicitly. 

We give below a brief account of Gauss's construction together with some small 
improvements we made. This algorithm has been coded in a computer program called 
GATESR, with which we can determine these 2-Sylow subgroups even if the dis- 
criminant d is so large that the computation of h(d) is not feasible. GATESR, of 
course, stands for "Gauss Ternary Square-Root". 

About 12- years after my Stony Brook talk [2], but before the present paper was 
submitted for publication, I learned from Professor H. Hasse that Helmut Bauer had 
written a somewhat related program. Bauer's paper will appear as [4]. He kindly sent 
me a preliminary account entitled "Die 2-Klassenzahlen spezieller quadratischer 
Zahlkorper". From this note, the differences between his paper and mine can be 
characterized as follows: 

A. There is a difference of language, and I do not mean German and English. 
Since I follow Gauss here, I use the language of quadratic forms. Bauer follows Hasse, 
and uses the language of divisors. But this is merely language, not a difference of 
substance; the groups involved are isomorphic. 

B. Because of the motivations indicated above, we are primarily interested in 
imaginary fields here, but the algorithm developed works for discriminants d > 0 
also, and we give several such examples in Section 6. Bauer gives equal attention to 
d > 0 and d < 0, but, on the other hand, he examines only d divisible by exactly two 
primes, as he states in his title [4]. These fields have r = 1, in the notation above, and 
cyclic subgroups. As I indicated above, the generalization to all d that can be factored 
completely is not difficult. I will give several noncyclic examples below. 

C. The most important difference is that Bauer does not use Gauss's ternary form 
reduction. He must solve a certain ternary equation, which is not specified in his note 
above. But since he confines himself, in this note, to Idl < 8000, he uses a simple, 
trial-and-error method, of obtaining a solution: "so dass es geniigt, ein einfaches 
Suchverfahren zu verwenden". In contrast, Gauss's reduction is highly efficient, 
arithmetically speaking, and can also be used for very much larger discriminants. In 
fact, it is only for large d that a program of this type is really needed; if d is small, one 
can easily compute h(d), and therefore 2' 1 U h(d), directly. 

2. Gauss's Solution with Some Changes. In [3, Section 286, p. 338] Gauss 
solves the following: 
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"PROBLEME. Etant donn6e une forme binaire F = (A, B, C) de determinant D 
appartenant au genre principal, trouver une forme binaire f qui donne Fpar sa duplica- 
tion." 

In this section we sketch Gauss's solution. We begin with some adaptation we 
must make in order to use his notation and solution, and we conclude with some 
changes that we make in his solution in order to shorten it somewhat. 

By (7) above, we mean a quadratic form 

524289x2 + 4xy + 524293y?. 

Gauss writes this as 

(524289, 2, 524293) 

with the middle term halved. These coefficients are the A, B, C in 

(13) F = Ax2 + 2Bxy + Cy2. 

Gauss calls D = B2 -AC the determinant of F. 
In what follows, we use this Gauss notation exclusively. That implies that we only 

allow even discriminants: 

d = 4(B2 - AC) = 4D. 

If the discriminant of Q(V - A) is already even, i.e., if d = -4A, there is no problem, 
but if A --I (mod 4), and d = -A, there also is no real problem. In the latter case, 
it is known that the primitive binary quadratic forms of discriminant -4A constitute 
a group under composition and its 2-Sylow subgroup is isomorphic to that of 
Q(.\l -A). Therefore, with no loss of generality, we can make the discrinminant even 
and use Gauss's solution directly. 

Now assume that 

(14) F = (a,, b3, a2) = a1x2 + 2b3xy + a2y2 

is in the principal genus. We want an 

(15) f = (a, b, c) 

such that f2 F under composition. Gauss adds three terms and enlarges F into a 
ternary form a1x2 + a2y2 + a3z2 + 2b,yz + 2b2xz + 2b,xy which he writes as 

(16) ~ ~ ~ ~ ~ ~ a a2 aa] (16) t = a 3] 

b1 b2 b3J 

The terms added are such that the determninant of t, which is defined as 

(17) D(t) = 
b2a, 

+ b a2 + b 2a, -aa2a3-2blb2b3, 

equals + 1. The form t has an adjoint: 

(18) T Al A2 A31 
B, B2 B3 

given by the equations 
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(19) Al = b - a2a3, A2 b - a1a3, A3 = b -a1a2 

B= = alb1 - b2b3, B2 - a2b .- b1b3, B3 = a1 b3 - bb2,. 

The adjoint of T may be seen to be t, since D(t) = 1. Therefore, we also have 

(0 B2 - A2A3 a2 = - 2 AA a- B - {20) al- I-21 2 2- s a 3- 12 

bl = AAB1 - B2B3, b2 = A2B, - B1B,, ,b = A3B3 - B1B2. 

Now, note that A3 is the determinant of F. Since F is in the principal genus, a, and 
.a2 are quadratic residues of each prime divisor of A,. There are therefore solutions of 

(21) B2 = 
a, 

+ 
A2A3, 

B2 = a2 + A1A3, B1B2 --b3 + B3A3 

consistent with (20). From Fand A3 we therefore determine BI, A2, B2, A1, and B3. We 
now have T and may compute the a3, b, and b2 needed to complete t from (20). 

By a series of linear transformations of determinants 41 that we discuss in the 
next section, Gauss transforms t into 

(22) t= l 0 0] 
1-1 0 0, 

which has the same determinant D(t') = + 1. Conversely, there is a 3 X 3 matrix m 
that transforms t' into t. Gauss now computes the a, b, c needed for (15) from the 
elements of m. 

We have already made one change in Gauss in our description above, in that 
Gauss builds his ternary t with -b3 instead of the original coefficient b,. But it seems 
preferable to use the original b,, as we do above, and adjust the sign of b at the end of 
the process. Next, in place of the t' of (22), we will use the ternary form 

(23) U={ 
0 1 0 

0 -1 0, 

This shortens the reduction process and also has the effect, as we shall see, that a, b, 
and c appear in their correct locations in the array below. Our third, and main change 
is that we do not compute an inverse such as m above. If M transforms t into u and 

(24) M= - 

X Y Z, 

we ignore its first two rows and have, directly, that if E is the sign of X, 

(25) f = (eX,-Y, 2-Z) or f= (2EX,-Y, eZ) 

according as X is odd or even. We not only avoid computing an inverse matrix, and 
also have simpler formulas for a, b, and c, but, in the series of transformations needed 
to transform t into u, it is only necessary to compute the third row in the corresponding 
series of matrices that culminate in M. 

Mostly, it is Gauss-but with improvements. By way of proof, one simply notes 
that the Gauss computation [3, Section 286], mentioned above, that leads to (a, b, c) 
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from the elements of m is really the computation of a single row in the inverse of m. 
This double inversion, therefore, merely cancels itself out. 

3. Gauss's Reduction and an Explicit Endgame. In reducing the ternary form t 
to u we first make a series of binary form reductions. We alternate between two 
different types which we call Phase 0 and Phase 1. The binary form reduction is the 
usual one (going back to Lagrange) of transforming into a series of "neighboring" 
forms. Given a form 

(26) (u, v, w) 

of determinant v2 - uw (which is positive, negative, or zero), and an initial matrix 

(27) f fl)2 11131 [1 
0 

n2 n3 0 1 

of determinant 1, we replace the form and the matrix by another form 

(28) (w, -v + Iw, u + I([-v + Iw] -a;)) 

and another matrix 

(29) 1)3 I/713- 1772 

nl3 s1113 - I-9J 

having the same determinants. The multiplier I is chosen so as to minimize I-v + Iw. 
In a finite number of steps we obtain a reduced form 

(30) (U, V, W), 

that is, we have 

(31) 2 I VI ? I Ul ? IWI or U = 0, I VI < I WI. 

By this reduction we obtain IUl ? lul . 
In Phase 0, the form (26) is taken as 

(32) (A3, B1, A2) 

using part of the current acljoint. This form has determinant a,. The final transforming 
matrix 

(33) Kn:o :1:] 

changes T into a new T and therefore t into a new t. But a, remains unchanged. 
In Phase 1, (26) is taken as 

(34) (al, b3, a2) 

from the current t. This results in a new t and a new B1 and A2. But A3 remains un- 
changed. 

In the next section, we give an explicit algorithm, so we will omit here the formulas 
used in computing the new t and the new (A3, Bl, A2). We may add, however, that we 
do not keep, or use, the entire adjoint T, merely the three elements indicated. 
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After a finite number of such Phase 0 and Phase 1 transformations, we will obtain 

(35) a, - A3 = 0 or a1al = IA31 = 1. 

At this point, Gauss is not very explicit, see [3, Section 274], since he is discussing the 
general ternary t with an arbitrary value of its determinant D(t). There are then many 
possibilities (i.e., the class number may be large, and many different reduced ternaries 
may exist). But we are only interested in D(t) = + 1 here and can be perfectly explicit. 
In fact, we must be; otherwise, there can be no program. 

If (35) is satisfied, there are five cases, and in each one we may transform the 
current t into u by an explicit matrix u. 

I. If a, = 0 and a3 is even, 

I -bi a3/2 

(36a) IA 0 b2 0 . 

o_ o -b2, 

IL. If a, = anda3 is odd, 

I -I - b, b, + (a3 + 1)/2 

(36b) 0 b2 -b9 I 

O0 O -b2 

III. If a,= -a2, 1, 

-b2 1 - b2 1 

(36c) ju= l + b,1 + b I1 

1 1 ol 

IV. Ifal = -a2 -1, 

1 + b2 I + b 11 
(36d) s= -bl 1 -b1 1I 

L 1 1 0J 
V. If a = a2 = 1, 

-b2 I - b2 I - b2 

(36e) I b, j -b, -bl 

(An explicit endgame; at this point, t should have resigned.) 

4. The Algorithm. The algorithm utilizes a changing sextuple t that begins as 
(16) and ends as (23), a similarly changing triple (32) from T, and another triple (x, y, 
z) called lastrow that begins as (0, 0, 1) and ends as the (X, Y, Z) of (24). The algorithm 
uses two subroutines COMTAT and GAURED. The second performs the Gaussian 
reduction described in Eqs. (26)-(3 1) above with a changing triple (u, v, w) and a 
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changing sextuple 

[MI m2 M3] 

fnl n2 n3 

The first has as input a form (a1, b3, a2). If this form is in the principal genus, this sub- 
routine solves the Eqs. (21)-details given below-and thereby computes the complete 
ternaries t and T of (16) and (18). If the form is not in the principal genus, the sub- 
routine so indicates and thereby terminates this chain in GATESR. 

In the formulas below, the left sides of the successive equations are replaced 
(sequentially) by the expressions on the right in terms of the latest values of all 
variables. Some variables are occasionally used as temporary storage if their most 
recent value is no longer pertinent; e.g., the first four formulas in "New Ternary" 
below. 

GATESR 
Start with a form 

(a,, b3, a2) 

1. Print form. 
Call COMTAT. 
(x,y,z) = (0,0,1). 

2. Phase = 0. 
(u, v, w) = (A3, B1, A2). 

3. Call GAURED. 
If Phase = 1, go to 4. 
New Lastrow 

ml = YM2 -zn2. 

z = zn3-ym3. 
y =- ml. (x remains unchanged.) 

New Ternary 
ml-=a2M3 - bln3. 
A3 = a3n3 - bIm3. 
B1 a2m2- b1n2. 
A2 = a3th- bIM2. 
a3 aMlIM3 + A3n3. 

bi - -BM3- A2n3. 

a2 = B1m2 + A2n2. 

inm b3m2- b2n2. 

b2 b2n3 - b3tn,. 
b3 in,. (al remains unchanged.) 

Ifal = 0, go to 8. 
New Adjoint 

A3 -u. 
Phase- 1. 
(ii, V, w) = (a,, b3, a2). 
Go to 3. 
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4. New Lastrow 
Ml = xm2 + yn2. 

y = xm3 + yn3. 
x = Ml. (z remains unchanged.) 

New Ternary 
(a,, b3, a2) = (u, v, w). 
Ml = b2M2 + b1n2. 

bi = b2M3 + b1n3. 

b2 = mi. (a3 remains unchanged.) 
If A3 = 0, go to 8. 
New Adjoint 

B1 = alb1 - b2b3. 
A2 = b2 a1a3. (A3 remains unchanged.) 

n= ajA3. 

If In,j I 1, go to 2. 
If n,= -1, goto 6. 
New Lastrow 

m, = -b2x + (1 + bj)y + z. 
ni = mi + x. 

5. z=x + y. 
Go to 9. 

6. Ifa = 1, go to 7. 
Ml = (1 + b2)x - bly + z. 
n =mi + y. 
Go to 5. 

7. ml =-b2x+(1-b,)y+z. 
ni = mi + x. 
z = ni-Y. 
Go to 9. 

8. -y 1 a31 (mod 2). 
MI = x. 

n1 = -(y + bl)x + b2y. 
Z = [yb1 + (Qy + a3)]X - b2y - b2Z. 

9. x-=iM. 
y = -ni. 

If x < 0, x = -x, z = -z. 
If x 0 (mod 2), go to 10. 

z -2z. 
Go to 11. 

10. x= 2x. 
11. (u, v, w) = (x, y, z). 

Call GAURED. 
(a,, b3, a2) = (U, V, W). 
Go to 1. 
END, 

The routine COMTAT computes t and Tfrom a given form (a,, b1, a2) in the princi- 
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pal genus. If 1A31 is a prime, as it is for the prime Sn mentioned above, we choose B1 as 
the smallest positive solution of 

(37) B_ a, (mod I A31). 

A convenient method of solving 

(38) x a (mod p) 

is the method described in [5]. If ml is the smallest positive solution of ml = 

a2 (mod IA31 ), we now take B2 as +ml or -iml, as required to satisfy the third equation 
in (21): 

(39) B1B2 + b3 = 0 (mod IA31). 

If IA31 is not prime, we obtain B1 by evaluating (38) for each p, dividing A3. We then 
combine these xi by the Chinese Remainder Theorem. 

I wish to acknowledge here the assistance of Richard Serafin in programming the 
foregoing algorithm in a Fortran program which utilizes multiprecision arithmetic 
routines that we obtained from D. H. Lehmer and Peter Weinberger. 

5. Old and New 2-Sylow Subgroups. Let us begin by verifying the result 
U(19) = 7 of the introduction. For all Sn, prime or not, an ambiguous form that 
generalizes (8) is (in Gauss's notation): 

(40) a = (2, 1, (1 + S.)/2). 

For one Va, generalizing (7), we need not use GATESR since we can give it explicitly: 

(41) \a = (2n + 1, 2, 2" + 5). 

It is easily verified that (40) is the square of (41) by composition. Further, for n > 1, 
and Sn prime, this /(t is seen at once to be in the principal genus since 2' + 1 1 
(mod 4), and so by the reciprocity law, is a quadratic residue of S". Therefore, U(n) > 3 
forn> 1. 

We begin our verification of U(19) = 7 with the form given by (41) with n = 19: 

(42) (a,, b3, a2) = (524289, 2, 524293). 

COMTAT determines 

B1 = 70152264827, B2 = 58934984227, 

and therefore 

524289 524293 582491 

= 133805 112409 2 

The corresponding indefinite form (A3, B,, A2), of determinant 524289, is now trans- 
formed by GAURED into 

-3319 - 1084371 
(-23, -2, 22795) with 

-13005 -424894, 

After three Phase 0 and two Phase 1 reductions, t is transformed into 
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0 1 3 
t = 

-2 1 0 

and lastrow into 

(x, y, z) = (169257, 641324, -3394305). 

Then, endgame (36b) gives 

(X, Y, Z) = (169257, 810581, 2752981) 

and (25) gives the new form 

(43) (a,, b3, a2) = (169257, 35704, 1631577) 

in agreement with (6). Like magic, isn't it? 
Since (43) is in the principal genus, GATESR continues and obtains as its next 

form that called G8 above. But the next cycle yields not the G4 shown above but the 
other square-root: 

(251361, 123202, 1153957). 

We now proceed up a different branch of the binary tree and finally conclude with 

(44) G19 = (344102, 51511, 806547) 

which is the the nonprincipal genus and is of order 128. So U(19) = 7, as before. 
The next prime Sn after S6 are the very large S4g, S,6, and S61. These primes are so 

large that their h(-4S,) have never been computed. But we apply GATESR as above 
and obtain, respectively, 

(45) G48 = (78911301602671, -3236633876873, 1004148160070862), 

(46) G6- = (14879838293235211, -362297848483874, 348957294826682799), 

(47) G61 = (2393122440531793838, 713539499646158397, 2434497500846761027) 

in the corresponding nonprincipal genus and of orders 512, 256, and 512.* So 

(48) U(48) = 9, U(56) = 8, U(61) = 9. 

These U(n) remain mysteriously large; we make only small progress in understanding 
this phenomenon in the final Section 8 below. 

6. Positive Discriminants: Small, Large or Odd. We now examine two real 
fields that exemplify several significant points. Consider first Q(V1226). One has an 
obvious ambiguous form with d = 4-226: 

(49) e = (2, 0, - 1 3). 

It is in the principal genus and we compute 

* A reader attempting to recompute (44)-(47) should be forewarned that the GAURED sub- 
routine used in their computation did not insist that the reduction condition (31) be satisfied strictly. 
A weaker condition, where the factor 2 was deleted, was used. This suffices to attain (35), and therefore 
an endgame, but may result in following a different path up the binary tree than that which would be 
followed if (31) were used. Of course, (48) remains invariant. 
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t [ 2 -1 13 -81 T 557 17 2261 

31 -1I 0 62 113 31 

One Phase 0 and one Phase 1 reduction produce 

1 1 7 
t= 2 -2 2J 

and endgame (36e) produces a new form 

(50) (14, 4, -15) 

in the principal genus. 
But (49) is equivalent to other forms; an obvious one arises from 226 12 + 152, 

namely, 

(51) a = (15, 1, -15). 

Had we chosen (51) in place of (49), we would have the entirely different 

t 15 -15 1l T [40 21 226J 

5 6 1 69 -95 -29 

A Phase 0 and Phase I now give 

I -1 961 
t = 

8 -32 0 
and endgame (36c) gives 

(52) (18, -8, -9). 

GATESR would now continue with either (50) or (52). But if we were computing 
by hand, we would see, at once, that since (52) is equivalent to 

(53) (-18, -8, 9), 

and since 9 = 32, the form (53) is obviously a square, and its square-root can be 
written immediately: 

(54) (-54, -8, 3) -- (3, -1, 75); 

cf. [6, Section 8]. FLirther, since (3 1 113) = - 1, (54) is obviously not a square and so 
we are done: the 2-Sylow subgroup is C(8). 

Now return to (51) and (49) and note that 15x2 + 2xy - 15y2 49, a square, for 
x , y = 1. Similarly, 2x2 - 113y' 49 for x = 9, y = 1 and 225 for x = 13, 
y = 1. There are therefore fornms equivalent to a, namely, 

(15, 31, 49) and (2, 26, 225) 

for which we may, once again, write their square-roots immediately. 
The conclusion is that for simiall d, and especially for small d > 0, such an ad hoc or 

trial-and-error proceduire can be faster than Gauss's systematic solution. We 
emphasize d > 0 because the class nuLmlbers are then usually muclh smaller and a form 
such as (49) will represenlt not only onie small square, but even many. 
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Now, on the contrary, suppose that d > 0 is very large and the fundamental unit of 
Q(Vd) is also very large. A new problem arises. Let 

a= (a, 0, -c) 

be one of its ambiguous forms with 4ac = d. It may now require a very extensive 
computation to determiiine if a is, or is not, equivalent to I, the principal form. If 
(- I (unknown to us), and if we apply GATESR to this a, we could obtain another 
fornm -4 as its square-root. Thtus, it is possible that GATESR would produce a 
sequence of forms, say, 

It , I, 1A a2, (a2)"2, (a2)/4, * G 

with G in a nonprincipal genus. In that case, we would only know an tipper bound 
for the order of G, and not necessarily its correct order. I believe there is no way, in 
general, of avoiding this "very extensive computation" in this circumstance: all of the 
many reduced forms equivalent to f are in the 2-Sylow subgroup, and we must contend 
with them. This problem cannot occur for d < 0. 

If d is odd, we use 44 instead, as we explained above. For example, consider Gauss's 
nonconstructible regular polygon: 

F5 232 + 1 = 641*6700417, 

and Q(VF6). The ambiguious form with d = 4FS is 

(55) (a (641, 0, -6700417). 

The fundamental unit is very small here and a is clearly not -. We therefore compute 

(56) B, - 644l*1593109, B2 -6700417 * (-121), 

and so 

641 -6700417 378759 
t = 

F1593109 -121 0 

Note that we can write t almost iimmediately, in a case such as (55), as soon as (56) has 
been comnputed. The remnaining coefficient a, - 378759 can be obtained at once 
fronm D(t) - 1. 

Two Phase 0 and one Phase I reduictions produce 

0 1 41 

2 1 () 

and endgamie (36b) gives a new form 

(143, -59, -33003471 2) 

in the principatl gCenuIs. ConltinIuation now determinies that C(32) is the wanted sub- 
group. 

We may note thiat we cotuld lhave also found 

641*409-- 6700417.4' 143- 
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by trial-and-error, but many more trials would now be needed. Further we are "lucky" 
here since 1432 is far smaller than could be expected probabilistically. For the cor- 
responding imaginary field, and positive definite form 

641X2 + 670041 7y2, 

it is obvious that this represents no small square. 

7. Noncyclic Subgroups. Consider the imaginary field 

Q((-2 1445599- 101361401)1/2) 

of [2, p. 438] which has 22 genera. Since 1445599 _ 7 (mod 8) and 101361401 1 
(mod 8) are nonresidues of each other, it is clear that 

a2 = (1445599, 0, 202722802) and G3 = (2891198, 0, 101361401) 

are in nonprincipal genera and 

a4 = (2, 0, 146527939924199) 

is in the principal genus. We compute 

-a/4 = (12529693, 4574990, 25059386), 

one of its four square-roots. It is not in the principal genus since 12529693 5 
(mod 8). We compute a2V\ a. by composition to obtain a second 

-/f4 = (13297693, -5513003, 24323699), 

also in a nonprincipal genus. There is no need to compute the remaining two since 
they are the inverses of V/4 a4nd -\a and are obtained simply by changing the sign 
of the middle coefficient. We have therefore found that C(2) X C(4) is the 2-Sylow 
subgroup. 

Suppose, more generally, that there are 22 genera and a2 and a, are in non- 
principal genera. Then the group is C(2) X C(2') and we wish to determine n. If a4 iS 

also nonprincipal then n = 1. If not, we compute a GATESR sequence: 

(e1/2, 
(e1/4 , . . ., 

until G, is nonprincipal. If a2G, is also nonprincipal, we are done, and ii equals the 
number of forms in (57). Otherwise, we erase G, from (57) and start up a new branch 
of the binary tree: 

(58) a,G,, (a,G )"12, (G2G,)1/4, , G2. 

Finally, n equals the total number of forms in (57), (58), etc., until Gk and R2G, are 
both nonprincipal. 

To illustrate this construction we list a series of imaginary fields that will also 
enable us to make quite a different point. Consider [6, Table 3] the fields Q((-D(y))`2) 
with 

D(y) = 27y - 74y3 + 84y2 - 48y + 12 

for y =-1 (mod 6). We note that D(y) I (mod 4) and list the 2-Sylow subgroup for 
several values of y: 
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y D(y) 2-Sylow y D(y) 2-Sylow 

11 43.7127 C(2) X C(32) -7 17 5569 C(2) X C(4) 
29 5 3472213 C(2) X C(64) -19 977*4153 C(2) X C(16) 
35 23.1628059 C(2) X C(8) -25 1249*9413 C(2) X C(2) 

For exanmple, for y _ 35 we have 

a4 = (46, 23, 814041) and V-\ = (6103, -1874, 6711) 

with the latter nonprinqjpaI. But, if 

(t2 =(23, 0, 1628059), 

then 

a2'\/=4 (4533, -304, 8281) 

is in the principal genus and we may continue one more step. So n = 3, as shown 
Again, for y = 29, 

a2 (2, 1, 8680533) 

is nonprincipal, while 

a4 (10, 5, 1736109) 

is principal and has 

(a4)1132 = (2307, -682, 7727) and a2(aa"1/32 = (4335, -1625, 4614) 

both in nonprincipal genera. 
The quite "different point" referred to is that these Q((- D(y))"'2) for square-free 

D(y) have 3-Sylow subgroups that always contain C(3) X C(3) as a subgroup. For 
y = 11, C(3) X C(3) is the 3-Sylow subgroup; for y = -19, C(3) X C(27) is this 
subgroup; while for y =-61 (not listed above), Q(3) X Q(3) X Q(3) is this subgroup. 
The question arises of constructing an algorithm that does for the 3-Sylow subgroup 
what GATESR does for the 2-Sylow. I offer notlhing here except the opinion that a 
solution would uncover an extensive ;ind interesting theory. 

Now consider Q((-3.(1 + 4 186))112) which also (incidentally) contains Q(3) X 
C(3) X C(9), and also has 22 genera. Since 

3(1 + 4.186) = 3*1777*76561 _ 3 (mod 8) 

we take - 12(1 + 4. 186) as the discriminant. This (does not clhange the 2-Sylow sub- 
grouip, as we stated (althouglh it does change the 3-Sylow subgroup). This timne 

t., =-- (3, 0, 136048897), Ga3- (1777, 0, 229683), a4 = (5331, 0, 76561), 

are all in the principal genus wlhile X/&2, Va, and \/( all are not. Thus, we are donQ, 
and C(4) X C(4) is the subgroup, since all other square-roots a3 a/2, 4 Va3, etc. 
nimist also be in nonprincipal genera. 

For arbitrarily many genera 2r, anid an arbitrarily comilplex array of factors, such as 
C(4) X Q(128) X ((128) X Q((2048), it is clear that the topology of the 2-Sylow 
subgroLIp maLly bc very intricate indeed. In principle, we maay use G3ATESR to trace 
ouit the entire sUbgroup. However, the question remains of determiining the n, of (I I) 
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in a minimal number of operations similar to our construction for C(2) X C(2') 
above, We leave this problem for any interested and ambitious reader, and only add 
that it is helpful to examine the cycle graph [7, Chapter 2] of the subgroup. For 
example, C(4) X C(16) is isomorphic to the 64 residue classes prime to 85 under 
multiplication (mod 85), and we see at once the topology of this group in the illustra- 
tion of its cycle graph shown in [7, p. 91]. Similarly, the cycle graph (mod 64) on [7, 
p. 90] would serve for the example Q((-D(- 19))1/2) above, with its residue class 33 
the image of the ambiguous form a4 in the principal genus. 

Let us take as our final examples Q(V\-N) for 
61 89 

(59) N1=l p, N2= ]I p. 
p-3 P-2 

They each have a very large number of genera, 216, and will enable us to make another 
important point. For N1 one could find that all the ambiguous forms 

a2, at3, . a , a833 

are in nonprincipal genera. For N2, one and only one is not. This is 

(60) (t = (2.5.7.13.19.29.31.43.59, 0, 311l17*23-37*41 47-53). 

The reader may verify (with some pleasure, we hope) that the left coefficient is a 
quadratic residue of each prime on the right, and conversely. Then this a has 65534 
square-roots in nonprincipal genera and two, namely, 

(61) /a = (19978173394, :14617823536, 97310430039) 

in the principal genus. Finally, all square-roots of Va/a are in nonprincipal genera.. 
Therefore 

(62) C(2) X C(2) X ... X C(2) (16 factors) 

is the subgroup for N1 while 

(63) C(2) X C(2) X ... C(2) X C(8) (16 factors) 

is the subgroup for N2. 
Obviously, these would be very lengthy computations if they were done by the 

recipe in Section 1. They were not. As previously indicated, if N is sufficiently small, we 
can rapidly compute h(-4N') by the method in [2]. Now the N of (59) are hardly small 
but the fact that we know a priori that 216 h(-4N) in these cases gives us sufficient 
leverage in the method of [2] that we can nonetheless quickly conmpuite 

(64) /z(-NA) = 216.811263, h(-4N2)- 218 393620. 

Since Q(V/-N1) therefore has an odd number of classes per genus, it is obvious that 
(62) is its subgroup. The factor 393620 in (64) would leave it open if the subgroup for 
Q(V/-N2) were (63) or 

(65) C(2) X C(2) X ... X C(2) X C(4) X C(4) (16 factors). 

Adtually, though, because of the phenomenon of the dominant factorization [2, Section 
7] the methods of [2] lead to (61) and (60) immediately. 

So, we repeat: for a "small" number of classes per genus, the method of [2] could 
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easily be faster than the method here. The method here is faster, and even essential, for 
such computations as lead to (48). 

8. GATESR as an Aid to Theory. Given an F in the principal genus, once a 
consistent pair of B,, B. satisfying (21) are chosen, the algorithm here gives an un- 
equivocal f such that j2 F. All properties of f, in particular, whether it itself is in the 
principal genus, are therefore implicit in the algorithm. Unfortunately, the algorithm 
is so intricate that it is usually not possible to determine these properties a priori, and 
one must, instead, examine f after the fact. But such an examination may lead to some 
new insight, 

For example, if F are the forms in (41) for the values n = 48 and n = 56, one 
obtains forms f whose middle coefficients are -8192 and -32768, respectively. While 
an electronic machine will simply ignore this, a thinking mathematician can hardly 
doubt that these -213 for n = 48, and - 215 for n = 56, are significant. Upon analysis, 
he therefore discover? the following 

THEOREM. 

16 I h(-4S4m) 

for all m, whether S4.. Is prime or not. 
Proof. The form 

f = (2 - 2m+1 + 22m+l + 1, -2m+1 24M + 23M+1 + 22m+1 + 1), 

when squared by algebraic composition, gives 

12 (24m + 1, 2, 24m + 5). 

Therefore, f is of order 8. If S,,, is prime, f is in the principal genus since its end coeffi- 
cients are 1 (mod 4). Thus, there is a \f of order 16. Whereas, if S4, is composite, 
there is at least one other factor in the 2-Sylow subgroup. This therefore contains 
C(2) X C(8) as a subgroup. 
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